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Abstract
In this paper we shall discuss the viscosity of hydrogen as a prototype of a
molecular fluid subjected to dissociation and ionization. In the dissociated
phase we shall show that the dependence of the viscosity on temperature exhibits
a crossover between an atomic and a screened plasma behaviour, as revealed by
recent ab initio simulations. If this transition between molecular, atomic and
plasma phase is well identified at low density (0.3 g cm−3), at higher density
(0.75 g cm−3) the transition is more abrupt and no atomic phase can be identified.

1. Introduction

Equilibrium molecular dynamics (MD) is an efficient tool for computing transport properties
such as autodiffusion, electrical or thermal conductivities and shear viscosity through the
Green–Kubo relations (non-equilibrium approaches are also possible but more difficult to
handle). Because classical MD is based on the a priori knowledge of the interactions, this
approach must be related to a specific model. One can cite simple liquids, with the simplest
ones being the hard-sphere liquid (Alder et al 1960) and the Lennard-Jones liquid (Levesque
et al 1973), atomic liquids and charged systems. This latter case is illustrated by the one-
component plasma (OCP) and by Yukawa screened models. In contrast, in ab initio molecular
dynamics (AIMD) no assumptions are made on the interactions of the system. A continuous
change can be produced (with some restrictions) from a simple molecular system to a plasma
without any hypothesis on the underlying physics. A paradigm of such a complex multiphase
system is hydrogen: starting from a well defined molecular system at low temperature, the
system dissociates at some given temperature which strongly depends on the density, and
eventually hydrogen atoms ionize, producing a plasma. During this process, interactions
between molecules, atoms and electrons are changing continuously in a very complex way,
which remains a subject of discussions. The fact that recent AIMD simulations of hydrogen
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are in good agreement with experimental results1 and theoretical predictions suggests that most
of the physics is captured by these simulations, and encourages us to compute more precisely
physical quantities of interest.

Up to now, the computation of transport properties involving collective currents such as
the viscosity was possible only with classical MD codes due to the poor statistics of current
autocorrelation functions (in contrast with velocity autocorrelation functions, which are easy
to obtain) and due to the need to approach as closely as possible the hydrodynamic limit. Due
to recent improvements of algorithms and parallel computers, AIMD computation of transport
coefficients such as viscosity is now imaginable and has been done for the first time in the
case of iron under geophysical conditions (Alfe and Gillan 1998). We shall show here results
obtained for 108 atoms of hydrogen propagated over more than 3 × 103 time steps of 0.2 fs in
a range of temperature between 1000 and 50 000 K. These numbers are sufficient to produce
current time correlation functions with an accuracy of 20% for the viscosity, but have to be
compared with recent Yukawa simulations involving 500 particles over 5 × 104 time steps
(Salin and Caillol 2002, Saito and Hamaguchi 2002).

In this paper we shall focus on the viscosity of hydrogen through the different physical
states encountered when increasing the temperature. We shall show that a simple molecular to
atomic dissociation model is not enough to reproduce our AIMD results at high temperature
and hence that a crossover with a plasma behaviour occurs at high temperature. This raises
the question of finding a correct screening length to describe the plasma phase.

2. The viscosity of a simple fluid

The viscosity of a simple atomic fluid can be written in terms of an autocorrelation function
of off-diagonal components of the stress tensor

η̃ = V

kB T

∫ +∞

0
η(τ) dτ (1)

= V

kB T

∫ +∞

0
〈σαβ(τ )σαβ(0)〉 dτ (2)

where σαβ are the five independent components of the traceless stress tensor, σ xy , σ yz , σ zx ,
1
2 [σ xx − σ yy] and 1

2 [σ yy − σ zz], with

σαβ =
∑
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miv
α
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β

i +
∑

i

∑
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rα
i j Fβ

i j (3)

where mi and vα
i are the mass and the α = x, y or z component of the velocity of the i th

particle and rα
i j and Fβ

i j the α and β components of the distance and of the force between i
and j .

This formulation can be related to the transverse current autocorrelation functions (Hansen
and McDonald 1986), but the stress formulation is more straightforward because there is no
extrapolation to the hydrodynamic limit to be taken (ω → 0, k → 0). Moreover, equation (3)
shows that the stress components σαβ are the sums of two components and hence the correlation
function η(t) has three contributions:

(i) a kinetic term, which originates from correlations in the velocities;
(ii) a potential contribution, which originates from interatomic forces, and

1 Except for the laser experiment, where AIMD results do not confirm the experimental compressibility (Bagnier
et al 2000), but are in agreement with other AIMD approaches and are restituting previous equations of state.
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Figure 1. Plot of the viscosity in SI units versus temperature in the Wallenborn–Baus formula,
equation (4).

(iii) a cross term. Depending on which regime we are in, kinetic or potential terms make the
most important contribution to the shear viscosity.

An important consequence is that the dependence of the viscosity on temperature is
not monotonic. At low temperature potential contributions are dominant and the viscosity
decreases with the temperature (liquid behaviour), in agreement with common sense,but at high
temperature kinetic terms are dominant and now the viscosity increases with the temperature,
which is counter-intuitive (gas behaviour). The consequence of these two opposite behaviours
is the existence of a minimum in the viscosity versus temperature.

This minimum has been also evidenced for charged particles by Bernu and Vieillefosse
(1978) in the case of the OCP at a temperature corresponding to a coupling parameter
� = Z 2e2/a(kT ) = 10, where a = (4/3πn)−1/3 is the mean ion-sphere radius and n is
the number density. Using kinetic theory, Wallenborn and Baus (WB) (1978) also showed the
existence of a minimum and proposed an analytical formulation of the viscosity

η∗ = λI1 +
(1 + λI2)

2

λI3
(4)

where

λ = 4π

3
(3�)3/2,

I1 = (180�π3/2)−1;
I2 = 0.49 − 2.23�−1/3

60π2
,

I3 = 0.241
�1/9

π3/2

(5)

and where η∗ is the dimensionless viscosity. The WB viscosity is plotted in figure 1 in SI units
(Pa s) versus temperature for a given density of 0.337 g cm−3 for hydrogen. This formulation
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Figure 2. Viscosity in Pa s versus temperature computed for three densities, 6 cm3 mole−1 (empty
circles), 4 cm3 mole−1 (empty squares) and 2 cm3 mole−1 (empty diamonds), corresponding to
densities of ρ = 0.337, 0.5 and 1 g cm−3 for hydrogen. The full curve is the fit formula (8).

has been used to compute the viscosity of mixtures (Clérouin et al 1998) by introducing an

effective coupling parameter �e f f = �Z
1/3

Z 5/3, where bars means averages over the number
composition of the mixture Z = x1 Z1 + x2 Z2.

3. Introducing dissociation

We now consider a molecular gas, and we want to investigate the effect of the dissociation
on the viscosity of the system. The molecular gas can be described as a system of particles
interacting through a exp-6 potential

V (r) = ε

α − 6

{
6 exp

[
α

(
1 − r

r �

)]
− α

(
r �

r

)6}
(6)

with parameters r � = 3.43 Å, ε = 36.4 K and α = 11.1 (Ree 1988). This potential was
corrected at short range to allow for very repulsive interactions at high pressure (Ross et al
1983). Its viscosity can be computed by classical MD and leads to a classical curve with a
minimum. In this regime the viscosity can be also related to the diffusivity with the help of
the Stokes–Einstein relation.

In this model (Dufrêche and Clérouin 2000), we suppose that some molecules are
dissociated into atoms, also interacting with a corrected exp-6 potential with parameters
r � = 1.4 Å, ε = 20 K and α = 13.0. The parameters describing interactions between
molecules and atoms are computed using the Lorentz–Berthelot rules (Ree 1988):

r �
H2−H = 1

2 (r �
H2−H2

+ r �
H−H)

εH2−H = √
εH2−H2εH−H

αH2−H = √
αH2−H2αH−H.

(7)

To determine the proportion of molecules and atoms (dissociation rate) corresponding to a
given density and temperature we used the Ross model (Ross 1998), which introduces a simple
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Table 1. Dissociation fraction for selected temperatures predicted by the Ross model (Ross 1998)
for the three volumes considered in the model.

Volume T
(cm3 mol−1) (K) % diss

6 1 000 0
6 5 000 6
6 10 000 52
6 25 000 93

4 1 000 0
4 5 000 17
4 10 000 69
4 25 000 95

2 1 000 20
2 5 000 84
2 10 000 93
2 25 000 96

density dependence of the dissociation energy. Dissociation fractions are given in table 1 for
the three molar volumes considered, and for selected increasing temperatures. It appears that
if at large volumes the dissociation is almost zero at 1000 K, it becomes significant (20%) at
low volume (2 cm3 mol−1) for the same temperature, illustrating the role of density. At high
temperature the dissociation fraction is beyond 50% as soon the temperature reaches 10 000 K
and is close to 95% for 25 000 K. At temperatures beyond 20 000 K we can hence consider
that the physics is dominated by the atomic interactions.

Using the prescribed proportion of atoms and molecules, the viscosity of the mixture is
then computed by classical MD. Typically 864 particles were simulated (molecules or atoms)
during a few 104 time steps with an energy conservation better than 10−3. The effect of
dissociation is to enhance the viscosity compared with the pure case. Simulations have been
performed for molar volumes of 6, 4 and 2 cm3 mol−1, corresponding to densities for hydrogen
of ρ = 0.337, 0.5 and 1 g cm−3, and a general scaling law has been found which reproduces
the behaviour of the viscosity versus temperature, as shown in figure 2.

η = T 5/2 exp[a + b ln x + c ln2 x] × 10−5Pa s (8)

where x = ρT −1/3, a = 38.17, b = 3.586 and c = 0.0547.

4. DFT simulations

Extensive AIMD simulations were performed with the VASP code, which is a plane-wave
pseudo-potential code developed at the Technical University of Vienna (Kresse and Hafner
1993, Kresse and Furthmüller 1996). Finite electronic temperature is implemented through
the Mermin functional, which allows for the study of systems at high temperature. Vanderbilt
ultrasoft pseudopotentials (Vanderbilt 1990) were used with an LSDA functional given by
the Perdew–Wang 91 parametrization of GGA (including explicitly the spin) (Perdew 1991).
Simulations, from which transport coefficients have been computed, were carried out with 108
atoms. It must be noted that, if temperature, pressure and total energies are well converged
after 600 time steps of 0.2 fs of purely microcanonical simulations (after 300 time steps
of thermalization by velocity rescaling), more time steps are needed to obtain statistically
significant transport coefficients, and most of the results were produced with 2000–4000 time
steps.
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Figure 3. Electronic density at V = 4 cm3 mol−1 (rs = 1.75) and T = 500 K (left) and
T = 15 000 K (right).

(This figure is in colour only in the electronic version)

We have produced simulations at different densities and temperatures covering
thermodynamical states from the dense molecular regime to the dense hydrogen plasma. An
illustration of the simulated molecular regime is shown in figure 3 (left), where hydrogen
molecules are clearly behaving as individual particles. The equation of state in this regime is
very close to classical evaluations using the Ross–Ree–Young potential (Ross et al 1983) and
is coherent with the 0 K experimental curve given by the Vinet equation (Loubeyre et al 1996).
When increasing the temperature, at a given threshold some molecules are broken and complex
dynamical structures appear, such as those shown in figure 3 (right). At higher temperature all
molecules are broken and only ionized atoms subsist in a continuous polarizable electronic bath.
Although simulations at very high temperature T > 50 000 K are limited by the increasing
number of orbitals required to describe the Fermi distribution at finite temperature and by the
conceptual validity of DFT in this regime, AIMD appears as a unique tool able to simulate the
continuous transformation of a physical system under changes of thermodynamic variables
(temperature and pressure).

It must be noted that in the regimes we are considering, where the electronic temperature
Te is much smaller than the Fermi temperature TF , the electrons are partially degenerate
(Te/TF � 1). The electronic density is supposed to follow adiabatically the ionic motion and
enters the computation of the transport coefficients through the screening of ionic interactions.
On the other side, in the classical regime (Te/TF 	 1), where electrons can be treated as
classical particles, the electronic contribution to the transport coefficient would be proportional
to the square root of the mass ratio, and hence negligible compared with the ionic contribution.

4.1. Results on transport coefficients

We have computed the diffusion constant from the integration of the velocity autocorrelation
function and the viscosity from the stress autocorrelation function equation (1) for different
temperatures and for three molar volumes: 6, 4 and 2.7 cm3 mol−1 corresponding to densities
for hydrogen of ρ = 0.337, 0.5 and 0.75 g cm−3 and to rs = a/aB = 2, 1.75 and 1.5. The
case V = 4 cm3 mol−1 is shown in figure 4. The plot of the audiffusion versus temperature
exhibits clearly the change from the dense molecular fluid to the dissociated system at about
T = 4000 K. In the dissociated regime the OCP prediction of Hansen et al (1975)

D∗ = c�−α (9)

with c = 2.95 and α = 1.35 strongly underestimates the diffusion constant.
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Figure 4. Autodiffusion versus temperature for V = 4 cm3 mol−1 (rs = 1.75). The full line is
Hansen’s OCP fit equation (9), and the dashed line is Murillo’s screened formula equation (10)
with λ = 2 λT F .

When changing from the molecular to the dissociated system, the usual general trend is
observed for the viscosity, with a minimum which corresponds to the change from the liquid
to the gas behaviour enhanced by the molecular dissociation. At low temperature, in the dense
molecular phase and in the dissociated phase up to 20 000 K the AIMD result is close to the
classical dissociation model (dotted curve), equation (8). At higher temperature the values of
the viscosity are saturating and lie between the OCP value given by the WB fit equation (4)
and the atomic model equation (8).

4.2. Connection with screened plasmas models

The departure of the value of the viscosity from the atomic prediction is clearly related to
the ionization and suggests that the system now behaves as a plasma. It is clear from the
previous results that the system is far from the limit of the OCP, which corresponds to a
completely degenerate electron gas, and is rather relevant to a screened plasma model with
particles interacting through the Yukawa potential V (r) = e2 exp −κr/r .

Two approaches are available for computing transport coefficients for Yukawa systems.
First, recently there has been intense activity on simulation of Yukawa systems and MD results
are now available (Ohta and Hamaguchi 2000, Salin and Caillol 2002, Saito and Hamaguchi
2002) for the diffusion and the viscosity, which are reported in figures 4 and 5. MD results for
a screening parameter κ = 1 and 2 are bracketing our high-temperature results.

The second way to predict transport coefficients for screened potentials has been suggested
by Murillo (2000). Using an argument based upon a equivalent hard-sphere system, Murillo
suggested injecting into OCP formulae a renormalized coupling parameter:

�OC P = A(κ) + B(κ)� + C(κ)�2 (10)

with κ being the inverse screening length in a units and

A(κ) = 0.46κ4

1 + 0.44κ4
,

B(κ) = 1.01e−0.92κ,
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Figure 5. Viscosity versus temperature for V = 4 cm3 mol−1 (rs = 1.75).

Table 2. TF screening lengths for the densities considered in the simulation.

rs = 2 rs = 1.75 rs = 1.5

λT F /a 0.452 0.483 0.522
κa 2.21 2.067 1.91
2λT F/a 0.904 0.967 1.05
κa 1.105 1.033 0.960

C(κ) = −3.7 × 10−5 + 9.0 × 10−4κ − 2.9 × 10−4κ2.

A natural screening length in this regime is the Thomas–Fermi (TF) screening length,
which in a units reads

λT F =
(

π

12Z

)1/3 1√
rs

with rs = a/aB .
By considering our results (diffusion and viscosity), it appears that κ = 1/λT F

overestimates the screening of the system when applied to Hansen’s formula, equation (9),
for diffusion or the WB formula, equation (4), for viscosity. Such a strong screening yields too
large diffusion and viscosity coefficients. We have found empirically that λ = 1/κ = 2λT F

predicts transport coefficients in much better agreement with our high-temperature results and
with classical MD data. The TF screening lengths for the densities considered in the simulation
are reported in table 2. For all densities considered 2λT F gives a screening parameter κ of
the order of unity. The fact that the TF screening length must be increased was previously
reported by Zérah et al (1992), and the same kind of renormalization has been also proposed
by Hansen and Yoshida (1991) to reproduce the pair correlation function of expanded liquid
metals. Two arguments can be proposed to justify such a renormalization:

(i) the use of a finite-temperature screening length would slightly increase the screening
length, but this effect is insufficient enough at temperatures considered here, and
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(ii) the description of the system with a screened potential is not justified for strongly non-
linear responses, which is particularly the case for hydrogen (no core electrons).

Thus, it appears that the behaviour of the viscosity at high temperature is well represented
by a screened plasma model, witnessing the transition from an atomic to a plasma behaviour.

5. Conclusion

The computation of the viscosity by AIMD reveals the different transitions occurring in dense
hydrogen. Starting from a dense molecular system with a liquid-like viscosity (decreasing
with the temperature), the dissociation reverses this trend and the viscosity is close to a pure
atomic model with a gas behaviour (increasing with the temperature). At high temperature
(T > 20 000 K), ionization strengthens the interactions and leads to a lower viscosity.
In this screened plasma regime, the viscosity can be deduced from the OCP results by a
renormalization of the coupling parameter. The choice of the correct screening length is the
key to the description of the hydrogen plasma.
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